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Abstract
To ensure a power generation level, the French national electricity supply (EDF) has to manage its producing assets by
putting in place adapted preventive maintenance strategies. In this paper, a fleet of identical components is considered,
which are spread out all around France (one per power plant site). The components are assumed to have stochastically
independent lifetimes but they are made functionally dependent through the sharing of a common stock of spare parts.
When available, these spare parts are used for both corrective and preventive replacements, with priority to corrective
replacements. When the stock is empty, replacements are delayed until the arrival of new spare parts. These spare parts
are expensive and their manufacturing time is long, which makes it necessary to rigorously define their ordering process.
The point of the paper is to provide the decision maker with the tools to take the right decision (make or not the
overhaul). To do that, two indicators are proposed, which are based on an economic variable called the Net Present
Value (NPV). The NPV stands for the difference between the cumulated discounted cash-flows of the purely corrective
policy and the one including the overhaul. Piecewise Deterministic Markov Processes (PDMPs) are first considered for
the joint modelling of the stochastic evolution of the components, stock and ordering process with and without overhaul.
The indicators are next expressed with respect to these PDMPs, which have to be numerically assessed. Instead of using
the most classical Monte Carlo (MC) simulations, we here suggest alternate methods based on quasi Monte Carlo
simulations, which replace the random uniform numbers of the MC method by deterministic sequences called Low
Discrepancy Sequences. The obtained results show a real gain of the quasi Monte Carlo methods in comparison with
the MC method. The developed tools can hence help the decision maker to take the right decision.
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Introduction

One major concern in reliability is the study
of preventive maintenance policies, which aims at
enlarging systems lifetimes and/or reducing their
operating costs. A case study is here proposed: A fleet
of identical components is considered, which are spread
out all around France (one per power plant site). Based
on their different locations, the components are not
structured in any kind of system. Also, their lifetimes
can be considered as independent random variables. The
components are however made functionally dependent
through the sharing of a common stock of spare parts.

These spare parts are expensive and their manufacturing
time is long. Also, lack of spare parts entails some
delay in the replacement of down components and some
high unavailability costs due to the induced shutdown
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of some part of the power plant. All these features
make it necessary to rigorously define the ordering
process of spare parts, in order to find a balance
between the ordering of eventually useless spare parts
and unavailability costs by lack of spare parts.

The purchasing price of spare parts and the high
unavailability costs make it necessary to consider
an alternative maintenance strategy than a purely
corrective one in order to prevent failures and reduce
unavailability periods. A general overhaul is then
considered, which requires a still more rigorous ordering
process and investments planning (details further). The
point of the paper is to provide the decision maker with
the tools to help him deciding whether this overhaul
should be undertaken or not.

An important question now is: which kind of
indicators will best help the decision maker to evaluate
this putative investments plan and take the right
decision? Several financial indicators can be considered.
The most common indicator from the reliability
literature is the expected cumulated cost7. However,
this indicator only reflects some mean behaviour of the
random cash-flow under a given investments plan, and
does not provide any insight into its economical venture.
Based on this, we propose to use other indicators based
on the Net Present Value (NPV), which stands for
the difference between the cumulated discounted cash-
flows of both current and new investments plans. In our
context, the current investments plan corresponds to a
purely corrective replacement strategy (no investments
planning) whereas the new investments plan involves
preventive replacement. Two quantities linked to the
NPV are considered: firstly, the expected NPV, which
simply stands for the difference between the respective
mean discounted cash-flows of both current and new
investments plans; secondly, the probability for the NPV
to be negative, which represents the probability to
regret the new investments plan and helps to better
capture the economic venture possibly entailed by the
new plan. Note that the cash-flows of both current and
new investments plans share a common history up to the
first time when they diverge and are hence dependent
random variables. The assessment of the probability for
the NPV to be negative requires to take into account
this dependence, which makes the study more complex.

Though standard in economical literature1;2, the
NPV seems to be somewhat less common in reliability
literature. There however are a few notable exceptions.
For instance, some authors suggest to consider the

reliability of a system in terms of its net present value,
which corresponds to the difference between its ”revenue
generation capability” and ”the cost of obtaining it”21.
They next characterize the best level of reliability which
maximizes the profit. Another paper focuses on the
analysis of the life-cycle costs of a pump4, which are
all summarized through their net present values. The
authors next use these different NPVs for helping to
choose the most cost-effective combination from the
point of view of design, development, production and
maintenance. Another study is devoted to the NPV
(or ”financial worth”) of a maintenance policy for a
multi-states deterioration system18, where the NPV
corresponds to the generated revenues resulting from
an increase flux service minus the cost-flows of the
maintenance.

Conversely to the present study, the authors of the
previous papers seem to only consider the expected
NPV, which does not require to take into account the
dependence between the two considered cash-flows for
its assessment. Also, the downtimes are assumed to
be negligible and spare parts always available. This
allow the authors to envision more intricate preventive
maintenance policies than in the present paper, where
all these difficult features are taken into account
(together with priority to corrective replacements with
respect to preventive ones and eventually postponed
preventive replacements).

In view of a precise definition of the NPV, the
random evolution of components, level of the spare parts
stock and ordering process must be jointly modelled.
This involves both continuous and discrete random

variables and Piecewise Deterministic Markov Processes
(PDMPs) are consequently well adapted6. To be more
specific, the NPV requires the introduction of two
stochastically dependent PDMPs for its definition, for
modelling both the current and new investments plans.
Once both maintenance strategies are modelled, the
decision criteria are next expressed with respect to the
two PDMPs. The numerical evaluation of the decision
criteria hence requires the numerical assessment of the
distribution of the two dependent PDMPs. Several
methods have been proposed in the literature for the
numerical assessment of PDMPs, among which the
most classical Monte Carlo (MC) simulations22. The
main drawback of MC method is its slow convergence,
which may entail long computational times. PDMPs
may also be quantified by finite volume schemes10;13.
These methods are however not adapted to the
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assessments of PDMPs for which the dimension of the
continuous part is greater than five. As the referred
industrial case requires a higher dimension, they do not
seem appropriate. Quantization methods3;20 are also
possible. However, they require the preliminary and
computationally expensive construction of an ”optimal”
discrete grid, which synthesizes the state space of the
PDMP. In the present study, the dimension of the state
space evolves over time due to the ordering process
and arrival of spare parts. The quantization method
would require the construction of all optimal grids for all
possible dimensions and it does not seem to be adapted
to our context either.

Based on these considerations, it seems that only MC
methods are available from the previous literature to
assess the distribution of the NPV. We here propose
to use Quasi Monte Carlo (QMC) methods as an
alternative, which are well-known for often having a
faster convergence than crude MC method. Let us recall
that QMC methods have first been developed in the
context of numerical integration, where they substitute
the random uniform variables of the MC method
by deterministic sequences with better uniformity
properties, the so-called Low Discrepancy Sequences
(LDS)19. Following previous studies12, a specific LDS
is used here: the Sobol sequence. A first possibility to
use QMC method in our context is to interpret the
quantities of interest (expected NPV and probability
for the NPV to be negative) as an expectation of a
functional of PDMPs (or of the underlying discrete
time Markov chains, equivalently), and hence boil
down to some classical numerical integration problem.
Based on the underlying Markov chain structure of a
PDMP, another possibility is to use a specific QMC
method devoted to the assessment of Markov chains
8;14. This method consists in simulating several copies
of Markov chains in parallel and in reordering copies
at each step in ascending order. The sorting step
allows some mixing between the copies and provides
a better estimation of the distribution of the Markov
chain16. A randomized version of this method is called
Array Randomized Quasi Monte Carlo method in
the literature16. This method is hence called Array
Quasi Monte Carlo (AQMC) method here after. Note
that the previous works on (A)QMC methods were
devoted to the quantification of one single Markov
chain with a simpler transition kernel than in the
present paper. We hence need to face two additional
difficulties, one induced by the complexity of the

Markov transition kernel of each of the two involved
PDMPs, the other by the dependence between the
two PDMPs. This requires some subtle adaptation of
the previously developed (A)QMC methods (including
a rigorous use of the elements of LDS). Randomized
versions of (A)QMC methods are also considered later
on, which consist in replacing the deterministic LDS
of the (A)QMC methods by some randomized version.
These are called Randomized (Array) Quasi Monte
Carlo methods hereafter.

The structure of the article is as follows: the
first section introduces both corrective and preventive
maintenance strategies, as well as the NPV. Then,
the second section presents the joint modelling of
the components and stock under the two maintenance
strategies through PDMPs. The numerical assessment
of the NPV by MC, (A)QMC and randomized (A)QMC
methods are presented in the third section. Numerical
results are provided in the fourth section and concluding
remarks end the paper.

Presentation of the problem
A fleet of n identical and stochastically independent
components is considered, which share a common
stock of spare parts. These components are subject
to corrective and preventive replacements (CR and
PR). Though other preventive maintenance (PM)
actions are performed in reality (such as adjustments,
cleaning, . . . ), we here consider that the effects of
such PM actions are taken into account in parameters
of the probability distribution of components lifetime.
Hence, only replacements are envisioned as possible
maintenance actions in all the following. At initial time,
the stock is assumed to contain S spare parts and the
supply time is deterministic, denoted by τ . Moreover,
the components of the fleet are assumed to be new at
time t = 0. The corrective and preventive maintenance
strategies are compared through the NPV on a fixed
operation horizon term denoted by H. Both strategies
are now presented.

The corrective maintenance policy
The corrective maintenance (CM) strategy consists in
replacing a failed component by a new one if a spare part
is available. If the stock is empty at a failure time, the
failed component becomes unavailable and it remains
down until a spare part becomes available. The ordering
process of a new spare part is as follows:
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• On [0, H − τ), a new spare part is ordered at each
failure of a component.
• On [H − τ,H], no order is made. Indeed, the

spare part would be delivered after the operation
horizon term.

The preventive maintenance policy

The preventive replacement (PR) is an exceptional
maintenance action. It takes place only once on the
operation term, at some time ζ, fixed in advance (with
ζ < H − τ). The PM strategy consists in preventively
replacing at time ζ, all components which did not fail
before. With that aim, spare parts are ordered at time
ζ − τ . Note that in the preventive strategy, the stock of
spare parts is common to both CR and PR. A CR has a
priority on a preventive one in the sense that, if CR are
pending at time ζ, they are first carried out. After all
pending CR have been performed at time ζ, PM actions
take place if remaining spare parts are still available.
When only a part of components awaiting a PR can
be replaced (by lack of spare parts), the components to
be replaced are randomly selected among all the equally
likely components awaiting a PR. In this case, the PR of
the remaining components is deferred until a new spare
part becomes available.

The ordering process of a new spare part is the
following:

• On [0, ζ − τ), a new spare part is ordered at each
failure of a component.
• At time ζ − τ , if there are components that have

never failed before, spare parts are ordered in
readiness for their PR at time ζ.
• On (ζ − τ, ζ), a spare part is ordered at failure of

a component C (say) but only in the case where
component C has already suffered a failure before.
Indeed, in the opposite case, the PR of component
C has been planned at time ζ and a spare part
has already been ordered for its replacement. This
spare part will be used for the CR of component
C at ζ.
• At time ζ, spare parts arrive, which are used

first for CR and next for PR. Some of these
replacements may be deferred by lack of enough
available spare parts.
• On (ζ,H − τ), a spare part is ordered at failure of

a component C which has already been replaced
(CR or PR). Indeed, in the other case, the PR of

component C has been deferred at time ζ and an
order is already in progress for its replacement.

• On [H − τ,H], no order is made.

Costs data

The cost function associated to an investments plan
takes into account discounted costs due to CR or PR,
purchase of spare parts and components unavailability.
An exponential discounting is considered, where a cost
C at time t corresponds to a discounted cost C e−αt

at time 0, with α the discounted rate. The costs
of corrective (cc) and preventive (cp) replacements
are cashed at replacement times. They correspond to
intervention costs and do not include the purchase cost
of spare parts. In case of a planned replacement at time
ζ, the purchase cost of a spare part (cps) is cashed at
delivery. In any other case (and any other time), it
is immediately cashed when a spare part is ordered
and is denoted by ccs. The unitary downtime cost per
component and unit time is denoted by Cuna. Downtime
costs are cashed at the end of unavailability periods.

The Net Present Value

As mentioned previously, the NPV stands for the
difference between the cumulated discounted cash-flows
of both strategies (CM and PM). The NPV is zero as
long as the two strategies coincide. The time T when
the two strategies first differ depends on the scenario:
if all components have already suffered a failure before
ζ − τ , then no PR is planned at time ζ, and T is equal
to H (NPV = 0). On the contrary, if there is at least
one component which has not suffered any failure up
to time ζ − τ , then a spare part is ordered in view of
its PR at time ζ, and this makes the two CM and PM
strategies to differ from time T = ζ − τ . Note that, even
in that case, the two strategies coincide on [0, ζ − τ) and
the NPV is always zero on [0, ζ − τ). After time ζ − τ ,
the two maintenance strategies are assumed to evolve
independently. Note however that they are correlated
through their common history up to time ζ − τ , which
entails some dependence between the cumulated costs
associated to each strategy.
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Modelling through PDMPs

Description of the constitutive parts of the
PDMPs
Piecewise Deterministic Markov Processes (PDMPs)
have been introduced by Davis M.H.A6 in a general
setting. A PDMP is a hybrid process (It, Xt)t≥0. The
first part It is discrete, with values in a discrete
state space E. The second part Xt is almost surely
continuous and takes range in a Borel subset B ⊂ Rd.
It usually represents environmental conditions such as
temperature or pressure, but it can also represent the
time to the next failure or to the next arrival of a spare
part, as in the present study. The process (It, Xt)t≥0
jumps at random isolated times. Between jumps, the
discrete part It is constant and the evolution of the
(almost surely) continuous part Xt is deterministic.

In our context, a PDMP is used to model the state
(up/down) of the n components, the times at which
their states change, the size of the stock, the arrival
times of the spare parts as well as the cost function
under each maintenance strategy. This leads us to define
the following variables as the constitutive parts of our
PDMP:

• Xt = (X1,t, . . . , Xn,t) where, for 1 ≤ j ≤ n, the
signification of Xj,t differs according to whether
the corresponding component is up or down. If
it is up, Xj,t is the time of its future failure
(Xj,t > t). If it is down, Xj,t is its last time of
failure (Xj,t ≤ t). Note that the place of Xj,t with
respect of t indicates whether the component is up
or down at time t and that it always represents a
failure time, either past or future.
• It = (I1,t, . . . , In,t) is a failure indicator: for 1 ≤
j ≤ n, if the component corresponding to Xj,t has
never failed before t, then Ij,t = 1, else Ij,t = 0.
Thus at time t, Kt =

∑n
j=1 Ij,t represents the

number of components that have never been
replaced on [0, t].
The vector (Xt, It) = ((X1,t, I1,t) , ..., (Xn,t, In,t))
is sorted in ascending order according to Xt. This
entails that (Xj,t, Ij,t) does not correspond to
a given component and that the corresponding
component will change over time. Note that the
failure time and failure indicator are kept together
in order to know which components remain to be
preventively replaced.
• St is a variable which is decreased by 1 at each

failure time and increased by 1 at each delivery of

one spare part. If St ≥ 0, then St represents the
number of available spare parts at time t, else −St
is the number of down components at time t.

• Dt = (D1,t, . . . , Dm,t) represent the predicted
times for spare parts arrivals where m is the
number of orders in progress. If no order is in
progress, Dt = 0 (say).

• Lt is the number of components at time t awaiting
a deferred PR.

• Ct is the cumulated discounted cost at time t.

The process Z = (Zt)t≥0 = (Yt, t)t≥0 =
((Xt, It) , St, Dt, Lt, Ct, t)t≥0 is a PDMP whose discrete
part is (It, St, Lt) and continuous part is (Xt, Dt, Ct, t).
The jumps of Z correspond either to the failure of
one component, to the arrival of a spare part or
to planned replacements at time ζ (case of the PM
strategy). Based on the fact that costs are cashed at
the end of unavailability periods (which correspond
to spare part arrivals), they are hence always cashed
at jump times (and also eventually at time H) and
do not evolve between jumps. Then, looking at the
other constitutive parts of the PDMP, it is clear that
the only thing which evolves between jumps is the
time t, so that Yt is constant between jumps. Setting
(Tk)k≥0 to be the jump times of (Zt)t≥0, simulating
trajectories of the PDMP (Zt)t≥0 is hence equivalent
to simulating trajectories of the underlying Markov
chain (Zk)k≥0 = (YTk , Tk)k≥0. Both the PDMP (Zt)t≥0
and the Markov chain (Zk)k≥0 are denoted by Z in the
following, where the distinction between the two will
be clear from the context.

We make use of several PDMPs with similar
constitutive parts in the sequel. To distinguish between
them, we add a superscript (i) to all of the previous
notations (e.g. Z(i)

t , T
(i)
k , . . . ).

Modelling the corrective maintenance strategy

The CM strategy is modelled with the PDMP Z(1) =(
Z

(1)
t

)
t≥0

. Though useless here, the variable I(1)
t is kept

in Z
(1)
t because it will be useful later on for initializing

the PM strategy. The variable K
(1)
ζ−τ =

∑n
j=1 I

(1)
j,ζ−τ

stands for the number of spare parts to be ordered at
time ζ − τ in readiness for PR at time ζ. Also, the
variable L(1)

t in Z(1)
t is here always equal to 0 and hence

useless. It is kept on only for sake of coherence of the
notations. The Markov chain Z(1) =

(
Z

(1)
k

)
k≥0

is now
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defined as follows: Z
(1)
0 =

((
X

(1)
0 , I

(1)
0

)
, S

(1)
0 , D

(1)
0 , L

(1)
0 , C

(1)
0 , T

(1)
0

)
Z

(1)
k+1 = φ1

(
Z

(1)
k , Uk+1

)
; Uk+1 ∼ U ([0, 1]) , k ≥ 0

(1)

where, for any d ∈ N∗, symbol U
(

[0, 1]d
)

stands

for the uniform distribution on [0, 1]d. The details for
both the initialization and transition function φ1 are
presented in Appendix A.

Setting N (1)
H to be the number of jumps of the PDMP

Z(1) on [0, H], the Markov chain Z(1) allows to model
the evolution of the PDMP up to the time T

(1)
N

(1)
H

of
the last jump of the PDMP on [0, H]. However, if a
component is down at time H, its unavailability cost
has not yet been taken into account at time T (1)

N
(1)
H

. In
that case, the corresponding downtime has to be added
from the failure time X(1)

j,H = X
(1)
j,T

(1)

N
(1)
H

up to the horizon

term H. This writes:

C
(1)
H = C

(1)
N

(1)
H

+ Cuna

n∑
j=1

(∫ H

X
(1)
j,H

e−αtdt

)
1{X(1)

j,H
≤H}

= C
(1)
N

(1)
H

+ Cuna
α

n∑
j=1

(
e−αX

(1)
j,H − e−αH

)
1{X(1)

j,H
≤H}

(2)

Modelling the preventive maintenance strategy
As presented before, the PM strategy consists in
replacing at time ζ all components which have never
been replaced before. Thus, spare parts are eventually
ordered at time ζ − τ in view of PR at time ζ. In this
case, the ordering process differs on [0, ζ − τ), [ζ − τ, ζ)
and [ζ,H] so that three different PDMPs are necessary
to model the PM strategy. We consequently set:

Z
(2)
t =


Z

(1)
t if 0 ≤ t < ζ − τ

Z
(3)
t−ζ+τ if ζ − τ ≤ t < ζ

Z
(4)
t−ζ if ζ ≤ t ≤ H

where
(
Z

(1)
t

)
0≤t<ζ−τ

models the CM strategy

on [0, ζ − τ) and where
(
Z

(3)
t−ζ+τ

)
ζ−τ≤t<ζ

and(
Z

(4)
t−ζ

)
ζ≤t≤H

model the evolution of the PM strategy
on [ζ − τ, ζ) and [ζ,H], respectively. The details of
the initialization and of the transition functions of
the Markov chains Z(3) and Z(4) are provided in
Appendices B and C, respectively.
Note that in case all components have failed before time

ζ − τ , both CM and PM strategies coincide so that
Z

(2)
t = Z

(1)
t ,∀t ≥ 0. Also, just as for the CM strategy,

the downtime cost of down components at time H is
cashed at the operation horizon term H.

The Net Present Value
Remembering that the NPV stands for the difference
between the cumulated discounted costs of both CM
and PM strategies, the NPV up to horizon H is:

NPV (H)

= NPV ([0, H])

= NPV ([ζ − τ,H]) 1{
K

(1)
ζ−τ>0

}
=
(
C(1) ([ζ − τ,H])− C(2) ([ζ − τ,H])

)
1{

K
(1)
ζ−τ>0

}
(3)

where C(1) ([ζ − τ,H]) and C(2) ([ζ − τ,H]) are depen-
dent through the state of components and stock at time
ζ − τ , and where we recall that K(1)

ζ−τ stands for the
number of spare parts to be ordered at time ζ − τ in
readiness for PR at time ζ (for strategy 1).

The quantities of interest are E [NPV (H)]
and P (NPV (H) ≤ 0). These quantities depend
on all events which occur during [0, H] in
both strategies. They can be expressed as

E
[
Φ
((

Z
(1)
k1
, Z

(2)
k2

)
0≤k1≤N(1)

H
, 0≤k2≤N(2)

H−ζ+τ

)]
where

N
(2)
H−ζ+τ stands for the number of jumps of Z(2) on

[ζ − τ,H] and where Φ is a complicate and non explicit
function.

Both maintenance strategies are now modelled, the
next step is the evaluation of the chosen criteria. The
proposed methods are presented in the next section.

Numerical assessment of the Net Present
Value

Monte Carlo method
Let us first note that the two Net Present Value
indicators of interest may be written under the shape
E [h (NPV (H))], where h (x) = x for the expected
NPV (H) and h (x) = 1{x≤0} for the probability for
the NPV to be negative at time H. As mentioned in
the introduction, MC simulations are classically used
to evaluate such quantities (or any other quantity
of the shape E [h (NPV (H))]). In our case, sample
paths of each Markov chain

(
Z

(i)
k

)
k≥0

, i = {1, 3, 4},
are sequentially simulated using its initialization and
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transition function. Samples of NPV (H) (and next
of h (NPV (H))) are derived using Equation (3). The
empirical mean of the h (NPV (H)) sample provides
an estimation of the corresponding theoretical quantity.
Confidence intervals are given by the central limit
theorem.

Quasi Monte Carlo method
Quasi Monte Carlo for general Markov chains. We first
consider a general Markov chain Z = (Zk)k≥0 which
takes range in E ⊆ Rs and such that{

Z0 = z0 ∈ E
Zk+1 = ϕk (Zk, Uk+1) ; Uk+1 ∼ U

(
[0, 1]d

)
, k ≥ 0.

The point is to see how to simulate N realizations of
(Z1, . . . , Zm) by QMC method, with m ∈ N∗ fixed. Let
us first note that, due to the recursive construction, Zk
can be written as

Zk = Φk (z0, (U1, . . . , Uk)) = Φk (z0,Uk)

where Uk = (U1, . . . , Uk) ∼ U
(

[0, 1]k×d
)

for all 1 ≤ k ≤
m. The simulation of one realization of (Z1, . . . , Zm)
hence requires a random uniform variable Um with
dimension m× d, where the k × d first dimensions (Uk)
are used for Zk. As mentioned in the introduction,
the QMC method consists in replacing the random
uniform variable by a LDS with the same dimension.
The random uniform variable Um is hence replaced by
a LDS Ūm×d with dimension m× d. To simulate N

realizations (zi1, . . . , zim)1≤i≤N of (Z1, . . . , Zm), the N

first elements
(
ūm×di

)
1≤i≤N of the LDS Ūm×d are used,

with ūm×di =
(
ū1
i , . . . , ū

m×d
i

)
. For each 1 ≤ i ≤ N and

each 1 ≤ k ≤ m, we use d successive coordinates of ūm×di

to generate the i-th realization zik of Zk from zik−1 with

zik = ϕk

(
zik−1,

(
ū

(k−1)×d+1
i , . . . , ūk×di

))
(4)

= Φk
(
zi0,
(
ū1
i , . . . , ū

k×d
i

))
.

In that way, one element ūm×di is used to assess one
realization

(
zi1, . . . , z

i
m

)
. In the general case where the

function Φk is not explicit (as in the present paper),
the generation of the i-th realization of (Z1, . . . , Zm) is
made sequentially through (4), as in the MC method.

As can be seen, the dimension of the LDS used for
simulating N realizations of (Z1, . . . , Zm) depends on m,
which should consequently be fixed in advance. When
the number of steps to be simulated (say M) is random,

one must fix in advance the maximal number of possible
steps. A possibility is to chose m such that P(M > m)
is very small and consider a LDS with dimension m× d.

Quasi Monte Carlo method for the Net Present Value.
Based on Subsection ”The Net Present Value”, one can
see that the NPV depends on NH = N

(1)
H +N

(2)
H−ζ+τ

uniform random variables, where N
(1)
H and N

(2)
H−ζ+τ

refer to PDMP Z(1) and Z(2), respectively. In order
to fix the maximal number of possible jumps (see the
end of the previous subsection), one may consider two
possibilities:

• Chose m(1) and m(2) such that both
P
(
m(1) < N

(1)
H

)
and P

(
m(2) < N

(2)
H−ζ+τ

)
are

very small and build a
(
m(1) +m(2))-dimensional

LDS. In that case, the idea is to use the m(1) first
dimension terms of the LDS for simulating Z(1)

and the m(2) last dimension terms for Z(2).
• Chose m such that P (m < NH) is very small and

construct a LDS with dimension m. The successive
jumps of Z(1) and next of Z(2) are assessed using
successive dimensions of the LDS.

The discrepancy of a LDS is known to increase when
the dimension increases5. As the first possibility will
generally use higher dimensions terms of the LDS
than the second, we prefer use the second method.
Let Ūm =

(
Ūk
)

1≤k≤m be a m-dimensional LDS and
Ūk:k+1 =

(
Ūk, Ūk+1), where Ūk represents the k-th

dimension of Ūm. Just as for general Markov chains,
the N first elements of the LDS

(
Ūm
i

)
1≤i≤N are used

to assess N realizations of the NPV (H) (and next of
h (NPV (H))). One realization of the NPV (H) (or
of Z(1)

k , Z(3)
k , Z(4)

k , equivalently) hence corresponds to
one element of the LDS. The quantities of interest
are estimated by the empirical mean of h (NPV (H)).
Specific details concerning the numerical assessment
of NPV (H) using the QMC method are given in
Algorithm 1. Note that this algorithm is just the same as
the MC one, with uniform random variables substituted
by elements of the LDS.

When the number n of components increases, the
required dimension for the LDS becomes larger, which
may entail inaccuracy5. To overcome this, we propose
to use Array Quasi Monte Carlo (AQMC) method,
specially developed for the simulation of Markov chains.
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Algorithm 1 Quasi Monte Carlo to assess the NPV
Construction of LDS Ūm in dimension m

Initialization of Markov chain Z
(1)
k

Z
(1)
0 = (G ((X0,1, 1) , . . . , (X0,n, 1)) , 1, 0, 0, 0, 0) where

X0,j = F−1 (Ū j)
j ← n+ 1; k ← 0
Simulation of CM strategy up to ζ − τ to order
spare parts in readiness for PR
while T (1)

k ≤ ζ − τ do
Z

(1)
k+1 = φ1

(
Z

(1)
k , Ū j

)
; j ← j + 1; k ← k + 1

end while
Calculation of number of components which
have never failed before ζ − τ
if K

(1)
ζ−τ = 0 then both strategies are identical and

the NPV at time H equals 0
else initialization of PM strategy: Z(3)

0

end if
Simulation of CM strategy up to horizon time
while T (1)

k ≤ H do
Z

(1)
k+1 = φ1

(
Z

(1)
k , Ū j

)
; j ← j + 1; k ← k + 1

end while

C
(1)
H = C

(1)
N

(1)
H

+ Cuna
α

n∑
j=1

(
e
−αX(1)

j,N
(1)
H − e−αH

)
1{X(1)

j,N
(1)
H

≤H}

if K(1)
ζ−τ > 0 then
Simulation of PM strategy up to time ζ

k ← 0
while T (3)

k ≤ ζ do
Z

(3)
k+1 = φ3

(
Z

(3)
k , Ū j

)
j ← j + 1; k ← k + 1

end while
Preventive replacements at time ζ

The initialization of Z(4)
0 depends on the number

of unavailable components at time ζ. Denote by Nζ

the number of random variables needed for initializing
Z

(4)
0 . Then, the Nζ following components of Ūm are

used to initialize Z(4)
k .

j ← j +Nζ ; k ← 0
Simulation of PM strategy up to horizon

time H

while T (4)
k ≤ H do

Z
(4)
k+1 = φ4

(
Z

(4)
k , Ūj:j+1)

)
j ← j + 1; k ← k + 1

end while

C
(2)
H = C

(4)
N

(4)
H−ζ

+

Cuna
α

n∑
j=1

(
e
−αX(4)

j,N
(4)
H−ζ − e−αH

)
1{X(4)

j,N
(4)
H−ζ

≤H}

else C(2)
H = C

(1)
H

end if
return NPV (H) = C

(1)
H − C

(2)
H

Array Quasi Monte Carlo method
Array Quasi Monte Carlo for general Markov chains. Let
us start again from a general Markov chain (Zk)k≥0
as in Subsection ”Quasi Monte Carlo for general
Markov chains”, where we recall that a d-dimensional
uniform random variable is required at each step.
Here, the chain is assumed to take range in R for
sake of simplicity (s = 1). The principle of AQMC
method is to simulate N trajectories of (Z1, . . . , Zm)
in parallel, with some mixing between them at each
step. More specifically, a LDS Sd+1 in dimension d+ 1
is considered, whose successive elements are denoted by
sd+1

1 , sd+1
2 , . . . , sd+1

p , . . . To simulate N realizations of
(Z1, . . . , Zm), the N ×m first elements of Sd+1 are used:
(sd+1

1 , . . . , sd+1
N ) is used to simulate N realizations of Z1,

next (sd+1
N+1, . . . , s

d+1
2N ) is used for Z2 and more generally,

(sd+1
(k−1)N+1, . . . , s

d+1
kN ) is used for Zk (all 1 ≤ k ≤ m).

The mixing of the trajectories is made through a sorting
step8;14, which we now describe specifically. Assume the
k-th step of the N chains in parallel is constructed (say(
zik
)

1≤i≤N ), the (k + 1)-th step is assessed as follows:

1. Relabel the chains
(
zik
)

1≤i≤N according
to the first coordinate of each element of
(sd+1
kN+1, . . . , s

d+1
(k+1)N );

2. Determine the next step of the N chains using
the d remaining coordinates in each element of
(sd+1
kN+1, . . . , s

d+1
(k+1)N );

3. Sort the chains in ascending order: z1
k+1 ≤ · · · ≤

zNk+1.

This procedure is repeated until the desired number
of steps is reached. When the chain takes range in
Rs with s > 1, a difficulty arises for the choice of the
sorting function. A first possibility is to define a uni-
dimensional sorting function, which may depend on all
constitutive parts of the Markov chain16. In that case,
a (d+ 1)-dimensional LDS is used as in the case s = 1.
Another mapping scheme is proposed in the literature8,
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which requires a (d+ s)-dimensional LDS: the s first
dimensions are used to relabel the chains and the d

last ones to assess the next step. Both methods have
been tested here with no evidence for one or the other
method. We consequently consider a uni-dimensional
function, which is simpler. Note that the efficiency of
the AQMC method highly depends on a judicious choice
of the sorting method and that a bad choice can even
provide wrong estimations.

Whatever the sorting method is, the dimension of
the LDS (d+ 1 or d+ s) is not linked any more to
the number of steps (m), as in the QMC method. In
the present study, the number of jumps of the PDMPs
on [0, H] increases significantly with the number of
components. In case of numerous components, the
AQMC method hence allows to radically reduce the
dimension of the LDS when compared to the QMC
method.

Array Quasi Monte Carlo for the Net Present Value.
The assessment of NPV (H) though the general
AQMC method described in the previous subsection
requires some further precision and specific non trivial
adjustments. Indeed, the NPV (H) is a function of
two dependent Markov chains, which model the two
maintenance strategies. This raises several questions:

• How to sort the Markov chains?
• How to keep the dependence between Markov

chains which share the same history?
• What should be the dimension of the used LDS?

As seen before, the sorting function has an effect on
the efficiency of the AQMC method. Some multivariate
sorting function has been proposed in the literature15,
where the Markov chains are successively sorted
according to their different coordinates and aggregated
into a certain number of packets at each sorting step.
The main difficulty of this multivariate sort is to
determine the numbers of packets to use at each sorting
step. We have tested this method in our context but the
successive sorting steps lead to very long computational
times, so that it does not seem adapted. We have also
tried to sort the chains according to their respective
cumulated discounted costs and according to their next
future jump times. The conclusion of those trials was
that the most efficient method was to sort the chains
in ascending order according to their next future jump
times, which is done in the remaining of the paper.

The point now is to see how to deal with the
dependence between the two dependent Markov chains

Z(1) and Z(2) in the AQMC method. During the sorting
step of the parallel Markov chains, we have to keep the
dependence between the copies of Z(1) and Z(2) which
share the same history. With that aim, a vector which
couples the chains with a common history is considered.

Finally, the dimension of the LDS to be used should be
specified. As for the initialization step, a n-dimensional
uniform random variable is required to predict the first
failure times of all n components and hence, a (n+ 1)-
dimensional LDS is used. As for the transitions, one
single lifetime is drawn at each failure time (if a spare
part is available), which requires one single uniform
random variable. Moreover, in the PM strategy, an
additional uniform random variable may be necessary in
case of a postponed PR, for the eventual choice of the
component to be preventively replaced. Based on this
analysis, an at most two-dimensional uniform random
variable is required and a 3-dimensional LDS is used.

An algorithm for the evaluation of the NPV using
AQMC method is now presented. The following
notations are considered:

• N the number of copies in parallel;
• Sl: a LDS in dimension l whose successive

elements are sl1, sl2, . . . ;
• sli1:i2 =

(
sli1 , s

l
i1+1, . . . , sli2

)
• sli(j): the j-th dimension of element sli
• sli (j1 : j2) =

(
sli(j1), sli(j1 + 1), . . . , sli(j2)

)
• sli1:i2 (j1 : j2) =

(
sli1 (j1 : j2) , . . . , sli2 (j1 : j2)

)
• Z(i)

k =
(
Z

(i)
k,1, Z

(i)
k,2, . . . , Z

(i)
k,N

)
: states of N copies

in parallel for Markov chain
(
Z

(i)
k

)
k≥0

;

• Z(i)
k (1 : M) =

(
Z

(i)
k,1, Z

(i)
k,2, . . . , Z

(i)
k,M

)
the M first

copies of Z(i)
k ;

• Z(i)
k+1 (1 : M) = φi

(
Z(i)
k (1 : M) , s2

m:m+M−1 (1 : j)
)

means that, Z
(i)
k+1,p = φi

(
Z

(i)
k,p, s2

m+p−1 (1 : j)
)

,
for j ∈ {1, 2} and 1 ≤ p ≤M ;

• Z(i)
(k) =

(
Z

(i)
k,(1), Z

(i)
k,(2), . . . , Z

(i)
k,(N)

)
: elements of

Z(i)
k sorted in ascending order according to

future jump times, namely Z
(i)
k,(p1) ≤ Z

(i)
k,(p2) if

T
(i)
k,(p1) ≤ T

(i)
k,(p2) ∀p1, p2;

• Z(i1,i2)
k1,k2

=
(

Z(i1)
k1

,Z(i2)
k2

)
=((

Z
(i1)
k1,1, Z

(i2)
k2,1

)
, . . . ,

(
Z

(i1)
k1,N

, Z
(i2)
k2,N

))
the coupled

chain of Z(i1)
k1

and Z(i2)
k2

;
• Z(i1,i2)

(k1),k2
=
((
Z

(i1)
k1,(1), Z

(i2)
k2,1

)
, . . . ,

(
Z

(i1)
k1,(N), Z

(i2)
k2,N

))
elements of coupled chain Z(i1,i2)

k1,k2
sorted in

ascending order according to the future jump
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times of Z(i1)
k1

, namely
(
Z

(i1)
k1,(p1), Z

(i2)
k2,p1

)
≤(

Z
(i1)
k1,(p2), Z

(i2)
k2,p2

)
if T (i1)

k1,(p1) ≤ T
(i1)
k1,(p2).

Details for the numerical assessment of the NPV (H)
using the AQMC method are provided in Algorithm 2.

Unlike the MC method where confidence intervals
are available for the estimations, (A)QMC methods are
deterministic and only an upper bound of the error is
accessible through the Koksma-Hlawka theorem5, which
is known to largely overestimate the error. Randomized
versions are now presented, which allow to construct
confidence intervals for the estimations.

Randomized (Array) Quasi Monte Carlo methods
As told in the introduction, Randomized (Array)
Quasi Monte Carlo methods use randomized LDS. A
randomized version of a LDS is a random sequence
which has the two following properties17:

1. each randomized point is uniformly distributed on
[0, 1]d , d ≥ 1,

2. the regularity of the point is preserved (in the
sense of a low discrepancy).

Thus, randomized Quasi Monte Carlo methods have
advantages on both (A)QMC method (confidence
intervals) and MC methods (better regularity than
a random sample). Several randomization methods
are available. We here used a random shift, which
means that starting from successive points (sd1, . . . , sdn)
of a LDS with dimension d, we set s̃di = (sdi + vj)
mod 1 for all 1 ≤ i ≤ n, where vj is a d-dimensional
uniform random variable17. Taking independent vj ’s
provides independent trajectories for the Markov chain,
allowing the construction of confidence intervals for the
estimations.

As for the assessment of the NPV (H), a first
randomized version is obtained by substituting the
deterministic LDS with dimension m from Algorithm 1
(QMC method) by a randomized version. This provides
the RQMC method. Two other randomized versions are
considered, based on Algorithm 2 (AQMC method),
which uses two LDS with respective dimensions n+
1 (initialization) and 3 (transition) and simulate N

trajectories of the Markov chains in parallel. In
both versions, the (n+ 1)-dimensional LDS is first
randomized. In the first version (denoted by RAQMC),
the 3-dimensional LDS is randomized one single time at
the beginning, whereas it is independently randomized

Algorithm 2 Array Quasi Monte Carlo to assess the
NPV

Construction of LDS Sn+1 and S3

Initialization of the array of Markov chains Z(1)
k

Sort elements of sn+1
1:N in ascending order according to

the first coordinate
Delete the first coordinate and sn1:N is obtained
Z(1)

0 =
(
Z

(1)
0,1 , Z

(1)
0,2 , . . . , Z

(1)
0,N

)
where Z

(1)
0,i =

(G ((X0,i,1, 1) , . . . , (X0,i,n, 1)) , 1, 0, 0, 0, 0) and
X0,i,j = F−1 (sni (j)) , 1 ≤ i ≤ N, 1 ≤ j ≤ n
Sort copies Z(1)

0 in ascending order according to the
future jump times and Z(1)

(0) is obtained
Z(1)

0 ← Z(1)
(0)

M
(1)
ζ−τ =

∑N
i=1 1{T (1)

0,i ≤ζ−τ}
represents the number of

copies that have not reached ζ − τ
k ← 0 , m← 1
Simulation of CM strategy up to ζ − τ to order
spare parts in readiness for PR
while M (1)

ζ−τ > 0 do
Sort elements of s3

m:m+M(1)
ζ−τ

in ascending order
according to the first coordinate

Delete the first coordinate: s2
m:m+M(1)

ζ−τ

Z(1)
k+1

(
1 : M (1)

ζ−τ

)
= φ1

(
Z(1)
k

(
1 : M (1)

ζ−τ

)
, s2
m:m+M(1)

ζ−τ
(1)
)

m← m+M
(1)
ζ−τ

M
(1)
ζ−τ ←

∑M
(1)
ζ−τ

i=1 1{T (1)
k+1,i≤ζ−τ}

Sort copies Z(1)
k+1 in ascending order according to

the future jump times: Z(1)
(k+1)

Z(1)
k+1 ← Z(1)

(k+1)
k ← k + 1

end while
Calculation of number of components which
have never failed before ζ − τ

Keep lines where spare parts are not ordered, i.e.
K

(1)
ζ−τ = 0. These lines are placed on the vector Vζ−τ

Initialization of PM strategy: Z(3)
0

Construction of the coupled chain

Z(1,3)
N

(1)
ζ−τ ,0

=
(

Z(1)
N

(1)
ζ−τ

,Z(3)
0

)
Simulation of CM strategy up to horizon time
k ← N

(1)
ζ−τ , thus k does not have the same value for

all copies
M

(1)
H =

∑N
i=1 1{T (1)

0,i ≤H}
is the number of copies that

have not reached H

Prepared using sagej.cls



Demgne et al. 11

while M (1)
H > 0 do

Sort elements of s3
m:m+M(1)

H
−1

in ascending order
according to the first coordinate

Delete the first coordinate: s2
m:m+M(1)

H
−1

Z(1)
k+1

(
1 : M (1)

ζ−τ

)
= φ1

(
Z(1)
k

(
1 : M (1)

ζ−τ

)
, s2
m:m+M(1)

H

(1)
)

m← m+M
(1)
H

M
(1)
H ←

∑M
(1)
H

i=1 1{T (1)
k+1,i≤H}

Sort copies of coupled chain Z(1,3)
k+1,0 in ascending

order according to the future jump times of Z(1)
k+1

Z(1,3)
k+1,0 ← Z(1,3)

(k+1),0
Give the same permutation on the vector Vζ−τ in

order to keep copies where the NPV is null
k ← k + 1

end while

C
(1)
H = C

(1)
N

(1)
H

+ Cuna
α

n∑
j=1

(
e
−αX(1)

j,N
(1)
H − e−αH

)
1{X(1)

j,N
(1)
H

≤H}

Replace the lines Vζ−τ of Z(3) by the corresponding
lines of Z(1)

Simulation of PM strategy up to time ζ

Sort copies of coupled chain Z(1,3)
N

(1)
H
,0

in ascending order

according to the future jump times of Z(3)
0 : Z(1,3)

N
(1)
H
,(0)

Z(1,3)
N

(1)
H
,0
← Z(1,3)

N
(1)
H
,(0)

Give the same permutation on the vector Vζ−τ
M

(3)
ζ ←

∑N
i=1 1{T (3)

0,i ≤ζ}
; k ← 0

while M (3)
ζ > 0 do

Sort elements of s3
m:m+M(3)

ζ
−1

in ascending order
according to the first coordinate

Delete the first coordinate: s2
m:m+M(3)

ζ
−1

Z(3)
k+1

(
1 : M (3)

ζ

)
= φ3

(
Z(3)
k

(
1 : M (3)

ζ

)
, s2
m:m+M(3)

ζ
−1

(1)
)

m← m+M
(3)
ζ

M
(3)
ζ ←

∑M
(3)
ζ

i=1 1{T (3)
k+1,i≤ζ}

Sort copies of coupled chain Z(1,3)
N

(1)
H
,k+1

in ascending

order according to the future jump times of Z(3)
k+1

Z(1,3)
N

(1)
H
,k+1

← Z(1,3)
N

(1)
H
,(k+1)

Give the same permutation on the vector Vζ−τ
k ← k + 1

end while

Preventive replacements at time ζ

The initialization of Z(4)
0 depends on the number of

unavailable components at time ζ. Denote by Ni,ζ the
number of random variables needed for initializing the
copies Z(4)

0,i then sort elements of sn+1
N+1:2N in ascending

order according to the first coordinate, delete the first
coordinate and snN+1:2N is obtained. The elements
Sn (N + i, 1 : Ni,ζ) , 1 ≤ i ≤ N , are used in order to
initialize the copy i.
Construction of coupled Markov chain

Z(1,4)
N

(1)
H
,0

=
(

Z(1)
N

(1)
H

,Z(4)
0

)
Simulation of PM strategy up to H

Sort copies of coupled chain Z(1,4)
N

(1)
H
,0

in ascending order

according to the future jump times of Z(4)
0 : Z(1,4)

N
(1)
H
,(0)

Z(1,4)
N

(1)
H
,0
← Z(1,4)

N
(1)
H
,(0)

Give the same permutation on the vector Vζ−τ
M

(4)
H ←

∑N
i=1 1{T (4)

0,i ≤H}
; k ← 0

while M (4)
H > 0 do

Sort elements of s3
m:m+M(4)

H
−1

in ascending order
according to the first coordinate

Delete the first coordinate: s2
m:m+M(4)

H
−1

Z(4)
k+1

(
1 : M (4)

H

)
= φ4

(
Z(4)
k

(
1 : M (4)

H

)
, s2
m:m+M(4)

H
−1

)
m←− m+M

(4)
H

M
(4)
H ←

∑M
(4)
H

i=1 1{T (4)
k+1,i≤H}

Sort copies of coupled chain Z(1,4)
N

(1)
H
,k+1

in ascending

order according to the future jump times of Z(4)
k+1

Z(1,4)
N

(1)
H
,k+1

← Z(1,4)
N

(1)
H
,(k+1)

Give the same permutation on the vector Vζ−τ
k ← k + 1

end while

C
(2)
H = C

(4)
N

(4)
H−ζ

+ Cuna
α

n∑
j=1

(
e
−αX(4)

j,N
(4)
H−ζ − e−αH

)
1{X(4)

j,N
(4)
H−ζ

≤H}

return NPV (H) = C
(1)
H − C

(2)
H

at each step of the Markov chain in the second version
(denoted by ARQMC).

Note that the ARQMC method is known16 to require
a longer CPU time than the MC and RQMC methods
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for the same sample size but to provide estimators with
a smaller variance.

Numerical results on a fictitious case study

Numerical parameters
To assess the expected NPV and the probability for the
NPV to be negative at horizon time H, the following
parameters are considered:

• Operation horizon time H = 60;
• Supply time τ = 1;
• Predicted time to preventive maintenance actions
ζ = 30;
• Probability distribution of components time to

failure: Weibull distribution W (48; 2.6) with c.d.f.

F (x) =
(

1− e−( x
48 )2.6)

1{x≥0}

and F (ζ) = 1− e−( 30
48 )2.6

' 0.2552

E [X] ' 42.6341 and V ar (X) ' 310.2542

• Continuous discount rate α = 0.075;
• Corrective replacement cost cr = 600 e;
• Preventive replacement cost cp = 100 e;
• Cost of downtime Cind = 200 e per year;
• Purchasing price of one spare part for planned

replacement cps = 200 e;
• Purchasing price of one spare part for unplanned

replacement ccs = 600 e.

Note that these parameters are not realistic. They have
only been defined in order to develop the fictitious case
study.

Comparison of the different methods
The point here is to compare the previously described
methods for numerically assessing the NPV indicators.
With that aim, one might use the effectiveness indicator
proposed by Glynn and Whitt11, for measuring the
efficiency of random simulation methods. This indicator
takes into account both the variance of the estimator
and the expected computing time. Later, Estécahandy9

proposed a new effectiveness indicator where the
variance of the estimator is replaced by its Mean Square
Error (MSE), where we recall that the MSE is the sum
of the squared bias and variance of the estimator. We
prefer use this second effectiveness indicator which takes
into account the accuracy of the method through the

bias and which can be used for deterministic methods
as well (which is not the case for the original one11).

For a specific definition of the effectiveness indicator,
let us set θ = E [h (NPV (H))] to be one of the
indicators of interest. Let us also introduce θ̂(N) to be
the estimator of θ (empirical mean) based on a sample
of size N and let tN be the corresponding Central
Processing Unit (CPU) time. For comparison purpose,
the sample size N should be the same for all envisioned
numerical methods.

For the deterministic methods (QMC and AQMC),
the effectiveness indicator is defined by:

ε (N) = 1(
θ̂(N) − θ

)2
× tN

. (5)

For the random methods (MC, RQMC, RAQMC and
ARQMC), it is defined by:

ε (N) = 1(
V ar

(
θ̂(N)

)
+
(
E
(
θ̂(N) − θ

))2
)
× E (tN )

.

(6)
Note that for a deterministic method, both expressions
(5) and (6) coincide. For a random method, ε (N)
is unknown and should be estimated. With that
aim, J independent simulations or randomizations of
N realizations of h (NPV (H)) are performed, which
provides J independent estimators θ̂j , j = 1, . . . , J of θ
(each based on a sample of size N). These J estimators
are i.i.d. realizations of θ̂(N) (estimator of θ). Setting
¯̂
θ = 1

J

∑J
j=1 θ̂j to be the empirical mean over θ̂j , j =

1, . . . , J , the effectiveness indicator is next estimated by:

ε̄ = 1[
1
J

∑J
j=1

(
θ̂j − ¯̂

θ
)2

+
( ¯̂
θ − θ

)2
]
× t̄

where t̄ represents the mean of the CPU times over the
J independent simulations or randomizations and where
the other term corresponds to the sum of the estimated
variance and squared bias of the estimator, namely to
the estimated MSE.

For all methods (deterministic or not), a higher
effectiveness indicator reflects a better efficiency.

Numerical results
For the numerical assessment, several values are
considered for the number of components (n) and for
the size of the initial stock (S). As a first step, reference
values and 95% confidence intervals (CI) are computed
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through crude MC simulations with a large sample size
N . These reference values are denoted by µ̂ref and p̂ref
for the expected NPV (H) and the probability of regret
P (NPV (H) < 0), respectively.

• For (n, S) = (5, 1), we get with N = 108:

µ̂ref = 16.740 and CI95% (µ̂ref ) = [16.724; 16.756] ,

p̂ref = 0.4371 and CI95% (p̂ref ) = [0.437; 0.4372] .

• For (n, S) = (10, 2), we get with N = 2× 108:

µ̂ref = 33.573 and CI95% (µ̂ref ) = [33.558; 33.584] ,

p̂ref = 0.396 and CI95% (p̂ref ) = [0.3959; 0.3961] .

• For (n, S) = (20, 4), we get with N = 5× 108:

µ̂ref = 70.998 and CI95% (µ̂ref ) = [70.983; 71.012] ,

p̂ref = 0.3394 and CI95% (p̂ref ) = [0.33936; 0.33944] .

The positive values of µ̂ref illustrate the fact that, in
a mean behavior, the PM strategy enables to reduce
unplanned unavailabilities. However, in view of the
probability of regret, at least one history over three leads
to a higher cost under the PM strategy than under the
purely corrective one. The decision to use or not the
PM strategy hence depends on the risk aversion of the
decision maker.

We now come back to the point of the present
paper, which is the comparison of the numerical results
obtained by the different methods described previously.
with that aim, we set:

• εexp and εexp: the effectiveness indicator on the
expected NPV (H) for the deterministic and
random methods, respectively;
• εp and εp: the effectiveness indicator on the

probability for the NPV to be negative at time
H for the deterministic and random methods,
respectively.

Deterministic methods are first compared in Table 1,
which provides the effectiveness indicators of both QMC
and AQMC methods. As can be seen in Table 1, the
effectiveness of the QMC and AQMC methods highly
depends on the number of components (n) and on the
size of initial stock (S), and also on the number N of
elements of LDS used for the computations. The same
remark is still valid for the respective efficiency of QMC
and AQMC: sometimes, QMC is better than AQMC,

Table 1. Comparison of deterministic methods

Methods εexp εp (×104)

(n
,S

)=
(5
,1

)

N = 215 QMC 22.719 20160
(32768) AQMC 157.423 237.199
N = 216 QMC 415.246 90.983
(65536) AQMC 394.231 6.052

(n
,S

)=
(1

0,
2) N = 218 QMC 159.462 159.458

(262144) AQMC 188.849 129.356
N = 219 QMC 186.392 44.593
(524288) AQMC 40.359 495.617

(n
,S

)=
(2

0,
4) N = 219 QMC 7.944 2.173

(524288) AQMC 1.957 452.940
N = 220 QMC 3.053 1.380

(1048576) AQMC 34.258 1.292

Table 2. Comparison of random methods

Methods ε̄exp ε̄p (×104)

(n
,S

)=
(5
,1

) N = 215
MC 1.867 5.641

RQMC 36.972 18.815
(32768) RAQMC 71.478 14.119

ARQMC 53.431 14.458

N = 216
MC 2.018 5.111

RQMC 27.254 13.610
(65536) RAQMC 46.099 13.415

ARQMC 68.175 15.476

(n
,S

)=
(1

0,
2)

N = 218
MC 0.5425 2.883

RQMC 10.595 7.181
(262144) RAQMC 14.078 6.735

ARQMC 14.144 5.115

N = 219
MC 0.572 3.764

RQMC 8.848 1.057
(524288) RAQMC 11.816 5.280

ARQMC 10.967 7.785

(n
,S

)=
(2

0,
4)

N = 218
MC 0.082 1.140

RQMC 1.226 2.919
(262144) RAQMC 2.715 2.762

ARQMC 2.762 2.667

N = 219
MC 0.110 1.916

RQMC 1.632 2.940
(524288) RAQMC 2.453 2.556

ARQMC 2.314 1.841

sometimes, it is the contrary. It is hence difficult to
identify the most efficient deterministic method.
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For a better understanding of the respective efficiency
of QMC and AQMC methods, we now compare
their randomized versions. With that aim, J = 128
independent sets of N trajectories have been simulated
for each method. The results are provided in Table 2. For
the expected NPV, Table 2 shows that the randomized
versions of AQMC method (RAQMC and ARQMC
methods) have always an effectiveness indicator higher
than that of randomized version of QMC method
(RQMC method). For example, for (n, S) = (10, 2) and
N = 218 = 262144, the effectiveness indicator on the
expected NPV is equal to 14.078 for the RAQMC
method, 14.144 for ARQMC method while it equals to
10.595 for the RQMC method, exhibiting an efficiency
gain of more than 30%. This efficiency gain is higher
than 121% for (n, S) = (20, 4) and N = 218 = 262144.
These results reflect that RAQMC and ARQMC
methods are more efficient than RQMC method for the
estimation of the expected NPV. The effectiveness of the
QMC method for estimating the probability of regret
is confirmed with the randomization. In fact, RQMC
method is often the most effective for this indicator.
However, we can emphasize that all randomized quasi
Monte Carlo methods are more effective than the MC
method whatever the number of components (n), the
initial stock (S) and the number of realizations (N) with
an efficiency factor for the expected NPV up to 38 with
(n, S) = (5, 1) and N = 215 = 32768 for example.

Conclusion

Two quasi Monte Carlo methods have been proposed
for the numerical assessment of complex PDMPs. In the
first quasi Monte Carlo method (QMC), the dimension
of the LDS is linked to the number of steps of the
PDMPs and consequently, to the number of components
as well. This is restricted to fleets with a few components
because in the opposite case, the quality of the LDS
decreases and also, memory problems may happen. In
AQMC method, the dimension of the LDS is equal to
the sum of the dimension of the Markov chain and of
the number of random variables required for one single
event. That significantly reduces the dimension of the
LDS.

Based on the results of the present paper and on other
numerical experiments not provided here, it seems that
QMC, AQMC methods and their randomized version
are promising alternatives to the most standard MC
method for the numerical assessment of PDMPs. To

be more specific, in our context, we have observed
that the QMC method is often the most effective for
a fleet of less than 10 components. The QMC method
is then recommended for this size of fleet. Moreover,
the adjustment of the MC method to obtain the
QMC method is simple. The AQMC method should be
preferred for a larger fleet (more than 10 components).
In fact, the dimension of the LDS stays low when the
number of components increases. The effectiveness of
these methods should be greatly appreciated within a
preventive maintenance optimization algorithm. It is
important to highlight that the developments that have
been presented here could be adapted for the assessment
of other maintenance strategies or for computing other
reliability indicators. We can then imagine that the
classical black box MC simulator of industrial reliability
softwares could be replaced by a black box (AR)QMC
simulator.
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Appendix A: Transition function of Markov
chain under CM strategy on [0, H]
We set F to be the common c.d.f of the components
lifetimes. Setting U ∼ U([0, 1]), we recall that F−1(U)
stands for a random variable with c.d.f. F and
hence stands for a lifetime. We also set (x, i) =
((x1, i1) , . . . , (xn, in)) and use (x, i) as a shortcut.
Finally, G(x, i) stands for vector ((x1, i1) , . . . , (xn, in))
sorted by ascending order according to the xi’s. These
notations are used in all the following appendixes.

We here present the initialization and transition
function φ1 introduced in Equation (1) for the modelling
of the CM strategy. As for the initialization, we have:

•
(
X

(1)
0 , I

(1)
0

)
= G

((
F−1(U1), 1

)
, ...,

(
F−1(Un), 1

))
where U1, . . . , Un are independent uniform
random variables on [0, 1],
• S(1)

0 = S: the stock contains S spare parts at
initial time,
• D(1)

0 = 0: no order is in progress at initial time,
• L(1)

0 = 0, C(1)
0 = 0, T (1)

0 = 0.

Based on the fact that no spare part can be ordered
after H − τ , the transitions of

(
Z

(1)
k

)
k≥0

are different
before and after H − τ and we consequently distinguish
the two cases.

Case 1: the future jump of the Markov chain is
before H − τ .
In this case, a new spare part is ordered at each
failure time. As for the transitions, there are two cases,
according to whether the stock is empty or not.

Firstly, assume that the stock contains s > 0 spare
parts. This induces that all components are working
and there may be orders in progress. We distinguish
two possibilities: the stock contains S spare parts or
the stock contains s < S spare parts. The transition
function is then defined by:

φ1 (((x, i), s, d, 0, c, t) , u)

= ϕa1 (((x, i), s, d, 0, c, t) , u) 1{s=S}

+ ϕb1 (((x, i), s, d, 0, c, t) , u) 1{0<s<S}

• Possibility 1: the stock contains S spare parts. In
this case, no order is in progress. Thus, the only
event that may occur is a failure. As one spare part
is available, the failed component is replaced and
its new time for future failure is randomly drawn.

The failure times are next sorted afresh according
to G. Also, a new spare part is ordered, which will
arrive after the supply time τ . Finally, the cost
of the CR and of the spare part are added to the
cumulative cost. Then:

ϕa1 (((x, i), S, 0, 0, c, t) , u)

=
(
G
(
x̄, ī
)
, S − 1, x1 + τ, 0, c+ Cc × e−αx1 , x1

)
where(
x̄, ī
)

=
((
x1 + F−1(u), 0

)
, (x2, i2) , ..., (xn, in)

)
Cc = cc + ccs.

• Possibility 2: the stock contains 0 < s < S spare
parts. This induces that at least one order is in
progress. If a spare part arrive before a failure of
a component, as all components are working, the
stock is then supplied. If a failure occurs before a
delivery of a spare part, then the failed component
is replaced by a new one and its future failure
time is randomly drawn. The failure times are next
sorted afresh according G. A new spare part is
ordered and the cumulative cost is updated. We
obtain:

ϕb1 (((x, i), s, (d1, . . . , dm) , 0, c, t) , u)

= ((x, i), s+ 1, (d2, . . . , dm) , 0, c, d1) 1{x1>d1}

+
(
G
(
x̄, ī
)
, s− 1, d̄, 0, c+ Cc × e−αx1 , x1

)
1{x1≤d1}

where(
x̄, ī
)

=
((
x1 + F−1(u), 0

)
, (x2, i2) , . . . , (xn, in)

)
,

Cc = cc + ccs,

d̄ = (d, x1 + τ) .

Secondly, assume that the stock is empty. Then,
at least one order is in progress in order to provide
the stock. There are two possible configurations: either
some components are working or all components are
down. Denote by −s the number of failed components,
x = (x1, . . . , xn) the times for last or future failure of
components (depending on whether the components are
down or up, respectively), sorted in ascending order
and d = (d1, . . . , dm) the predicted times for spare parts
arrivals. Note that the next failure occurs at the lowest
time greater than the current time i.e. at time x1−s. If
there are some up components (−s < n), two events may
happen: either a failure (x1−s ≤ d1) or the delivery of
a spare part (x1−s > d1). If all components are down
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(−s = n), the only possible event is the delivery of
a spare part. Based on this analysis, there are three
possible scenarios:

φ1 (((x, i) , s, d, 0, c, t) , u) 1{s≤0}

= φa1 (((x, i) , s, d, 0, c, t) , u) 1{x1−s≤d1,−n<s≤0}

+ φb1 (((x, i) , s, d, 0, c, t) , u) 1{x1−s>d1,−n<s≤0}

+ φc1 (((x, i) , s, d, 0, c, t) , u) 1{s=−n}

which we now look at specifically.

• Scenario a: there are up components and a failure
occurs before the delivery of a spare part (x1−s ≤
d1,−n < s ≤ 0). As the stock is empty, the failed
component becomes unavailable and an order is
carried out for its replacement. Thus, the number
of unavailable components is increased by 1 and
the purchasing price of one spare part is added to
the cumulative cost:

φa1 (((x, i) , s, d, 0, c, t) , u)

=
((
x̄, ī
)
, s− 1, d̄, 0, c+ cA × e−αx1−s , x1−s

)
with(

x̄, ī
)

= (x1, i1) , . . . , (x1−s, 0) , . . . , (xn, in) ,
d̄ = (d, x1−s + τ) .

• Scenario b: there are up components and the
delivery of a spare part occurs before a failure
(x1−s > d1,−n < s ≤ 0). If all components are
working, then the stock is supplied and it contains
now one spare part. Consequently, there is no more
order in progress. In the opposite case (at least
one down component), a CR is performed on the
down component which has the oldest failure time
and its new time for future failure is drawn. The
number of unavailable components is decreased by
1. Finally, the failure times are sorted afresh and
the costs of CR and downtime are added to the
cumulated cost:

φb1 (((x, i) , s, d, 0, c, t) , u)

= ((x, i) , 1, 0, 0, c, d1) 1{s=0}

+
(
G
(
x̃, ĩ
)
, s+ 1, (d2, ..., dm) , 0, c+ C̄, d1

)
1{s<0}

• Scenario c: all components are down (s = −n).
The next event is the delivery of a spare part. The
CR of the component which has the oldest failure

time is performed:

φc1 (((x, i) , s, d, 0, c, t) , u)

=
(
G
(
x̃, ĩ
)
, s+ 1, (d2, ..., dm) , 0, c+ C̄, d1

)
with(

x̃, ĩ
)

=
((
d1 + F−1(u), 0

)
, (x2, i2) , ..., (xn, in)

)
,

C = cc × e−αd1 + Cuna
∫ d1
x1
e−αtdt

= cc × e−αd1 + (Cuna/α)×
(
e−αx1 − e−αd1

)
.

Case 2: the future jump of the Markov chain is
after H − τ .
The only difference is that no spare part is ordered
at failure times. However, the previously ordered spare
parts may still arrive. Once empty, the stock remains
empty up to horizon H.

Appendix B: Transition function of Markov
chain under PM strategy on (ζ − τ, ζ)
We only consider the case where at least one spare parts
is ordered at time ζ − τ (because both CM and PM
strategies coincides in the other case). We recall that
the Markov chain Z(3) models the evolution of the fleet
of components under the PM strategy on [ζ − τ, ζ) and
that K(1)

ζ−τ =
∑n
j=1 I

(1)
j,N

(1)
ζ−τ

spare parts are ordered at
time ζ − τ , which will arrive at time ζ. We begin with
the initialization of Z(3) which only depends on the state
of Z(1) at time ζ − τ (or at time T (1)

N
(1)
ζ−τ

, equivalently):

Z
(3)
0 =

((
X

(1)
N

(1)
ζ−τ

, I
(1)
N

(1)
ζ−τ

)
, S

(1)
N

(1)
ζ−τ

,

(
D

(1)
N

(1)
ζ−τ

, ζ

)
,

L
(1)
N

(1)
ζ−τ

, C
(1)
N

(1)
ζ−τ

, ζ − τ
)
,

where ζ is added to the dates of spare parts arrivals.
Let us recall that, in the PM strategy, a new spare

part is ordered at failure of one component on (ζ − τ, ζ)
only if the failed component has already been replaced
(because in the opposite case, a spare part has already
been ordered at time ζ − τ in view of its PR at atime
ζ). As a consequence, the transitions of Z(3) differ from
that of Z(1) only at failure of a component which has not
yet suffered from any failure (I(1)

j,t = 1) and for which no
spare part is ordered when it fails. We consequently only
consider this case here and refer to the transitions of Z(1)

for all other transitions. Two different cases have to be
envisioned, according to whether the stock is empty or
not at the failure time. When the stock is not empty
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(s > 0), a CR takes place, which provides:

φ3 ((((x1, 1) , (x2, i2) , . . . , (xn, in)) , s, ζ, 0, c, t) , u)

=
(
G
(
x̄, ī
)
, s− 1, ζ, 0, c+ cc × e−αx1 , x1

)
with

(
x̄, ī
)

=
((
x1 + F−1(u), 0

)
, (x2, i2) , . . . , (xn, in)

)
.

When it is empty (s ≤ 0), no CR takes place and the
PR of the failed component is cancelled. Noting that the
index of the failed component is 1− s and we get:

φ3 ((((x1, i1) , . . . , (x1−s, 1) . . . , (xn, in)) , s, d, 0, c, t) , u)

=
((
x̃, ĩ
)
, s− 1, d, 0, c, x1−s

)
with

(
x̃, ĩ
)

= ((x1, i1) , . . . , (x1−s, 0) , . . . , (xn, in)) .

Appendix C: Transition function of Markov
chain under PM strategy on [ζ,H]

The spare parts which have been ordered at time ζ − τ
arrive at time ζ. They are used first for potential
pending CR and next for PR. The Markov chain Z(4)

models the fleet of components on [ζ,H) under the PM
strategy and its initialization depends on the number of
unavailable components and of the components awaiting
a PR at time ζ. Consequently, the initialization of Z(4)

is a deterministic function of all variables at time ζ−,
namely of Z(3)

ζ or Z(3)
N

(3)
τ

. In the PM strategy, an uniform
random variable is used to draw a new lifetime at
each failure time if a spare part is available. However,
recall that in case where we have postponed PR, an
additional uniform random variable may be necessary
for the eventual choice of component to be preventively
replaced. The transition function of (Z(4) then depends
on a random uniform variable of dimension one or two
and is defined by: Z

(4)
0 =

(
G
(
X

(4)
0 , I

(4)
0

)
, S

(4)
0 , D

(4)
0 , L

(4)
0 , C

(4)
0 , ζ

)
Z

(4)
k+1 = φ4

(
Z

(4)
k , Uk+1

)
; k ≥ 0

where Uk+1 = (Uk+1 (1) , Uk+1 (2)) ∼ U
(

[0, 1]2
)

.

Let K(3)
ζ =

∑n
j=1 I

(3)
j,ζ be the number of components

which have never been replaced. The different cases
of initialization of Markov chain Z(4) are given in the
following subsections.

All components are working at time ζ(
S

(3)
N

(3)
τ

≥ 0
)

In this case, all components awaiting a PR will be
replaced. Their new time for future failure is randomly
drawn and the failure times are sorted afresh according
G. If there is unused spare parts, they are added in the
stock. The cost of PR and the purchase cost of spare
part for PR are added on the cost just before ζ. We the
obtain:

• X(4)
0 =

(
X

(4)
1,0 , . . . , X

(4)
n,0

)
where for j ∈ {1, . . . , n}

and u ∼ U ([0, 1]),

X
(4)
j,0 =

 ζ + F−1 (u) if I(3)
j,N

(3)
τ

= 1

X
(3)
j,N

(3)
τ

otherwise

the new failure times of all components which
have never been replaced

(
I

(3)
j,N

(3)
τ

= 1
)

are drawn.

N
(3)
τ stands for the number of jumps of Z(3) on

(ζ − τ, ζ);
• I(4)

0 = (0, . . . , 0): all components which have not
suffered from any failure are preventively replaced
at time ζ. Then, all components have been
replaced (CR or PR) at time ζ;

• S(4)
0 = S

(3)
N

(3)
τ

+Kζ−τ −Kζ : the unused spare parts
are added in the stock;

• D(4)
0 =

(
D

(3)
2,N(3)

τ

, . . . , D
(3)
m,N

(3)
τ

)
: the spare parts

arrive at ζ and D
(3)
1,N(3)

τ

= ζ is removed in D
(3)
N

(3)
τ

;

• L(4)
0 = 0: no deferred PR;

• C(4)
0 = C

(3)
N

(3)
τ

+
(
K

(1)
ζ−τ × cps +K

(3)
ζ × cp

)
× e−αζ :

the cost of PR and of spare parts are added on
the cost just before ζ.

As all components have been replaced at time ζ,
the transition function under PM strategy after time
ζ evolves in the same way as CM strategy. Then, the
transition function of Markov chain Z(4) is defined by:

Z
(4)
k+1 = φ4

(
Z

(4)
k , Uk+1

)
= φ1

(
Z

(4)
k , Uk+1 (1)

)
; k ≥ 0.

There are some unavailable components at ζ(
S

(3)
N

(3)
τ

< 0
)

Here, the components awaiting a CR are first repaired.
There are two different cases whether the number
of spare parts arrivals

(
K

(1)
ζ−τ

)
is lower or equal to

the number of components awaiting a corrective or
preventive replacement

(
K

(3)
ζ − S

(3)
N

(3)
τ

)
. Note that this

case where the components are unavailable at ζ, the
number of spare parts arrivals at time ζ cannot be upper
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than the number of awaiting replacements. In fact, on
(ζ − τ, ζ) a spare part is ordered only at the failure
of a component which has already suffered a failure
before and it will be delivered after ζ. Let χζ be the
subset of subscripts of components which have never
been replaced up to ζ. χζ is defined by:

χζ =
{
j ∈ {1, . . . , n} : I(3)

j,N
(3)
τ

= 1
}
.

We can note that card (χζ) = K
(3)
ζ .

Case 1: the number of spare parts arrivals is equal
to the number of components awaiting a replacement(
K

(3)
ζ − S

(3)
ζ− = K

(1)
ζ−τ

)
. In this case, all components

awaiting a replacement will be replaced. We obtain:

• X(4)
0 =

(
X

(4)
1,0 , . . . , X

(4)
n,0

)
where for j ∈ {1, . . . , n}

and u ∼ U ([0, 1]),

X
(4)
j,0 =


ζ + F−1 (u) if 1 ≤ j ≤ −S(3)

j,N
(3)
τ

ζ + F−1 (u) if j ∈ χζ
X

(3)
j,N

(3)
τ

otherwise

all CR and PR are performed, their predicted
times for future failure are drawn and the other
components are not changed;
• I(4)

0 = (0, . . . , 0): all components have been
replaced (CR or PR) at time ζ;
• S(4)

0 = 0: all components are working after
replacements and all spare parts arrivals have been
used;
• D(4)

0 =
(
D

(3)
2,N(3)

τ

, . . . , D
(3)
m,N

(3)
τ

)
: D

(3)
1,N(3)

τ

= ζ is
removed;
• L(4)

0 = 0: no deferred PR;
• The cost of CR, of PR and of downtime of

components are added to the cumulated cost:

C
(4)
0 = C

(3)
N

(3)
τ

+
(
K

(1)
ζ−τ × c

p
s +K

(3)
ζ × cp

)
× e−αζ

− S(3)
N

(3)
τ

× cc × e−αζ + Cζuna

with

Cζuna = (Cuna/α)×

−S(3)

N
(3)
τ∑

j=1

(
e
αX

(3)

j,N
(3)
τ − e−αζ

)
.

As previous case, no PR is deferred. Then, the
transition function of Markov chain Z(4) is given by:

Z
(4)
k+1 = φ4

(
Z

(4)
k , Uk+1

)
= φ1

(
Z

(4)
k , Uk+1 (1)

)
; k ≥ 0.

Case 2: the number of spare parts arrivals is lower
than the number of components awaiting a replacement(
K

(3)
ζ − S

(3)
N

(3)
τ

> K
(1)
ζ−τ

)
. Here, the PR will be deferred.

CR are first carried out. If there are remaining spare
parts, the PR are performed as long as the spare
parts are available. Let Nζ

c = min
(
−S(3)

N
(3)
τ

,K
(1)
ζ−τ

)
be

the number of components which will be correctively
replaced at ζ and χ̄ζ be the subscripts of components
which will be preventively replaced at time ζ if there are
remaining spare parts Nζ

p =
(
K

(1)
ζ−τ + S

(3)
N

(3)
τ

> 0
)

. We
have:

• X(4)
0 =

(
X

(4)
1,0 , . . . , X

(4)
n,0

)
where for j ∈ {1, . . . , n}

and u ∼ U ([0, 1]),

X
(4)
j,0 =


ζ + F−1 (u) if 1 ≤ j ≤ Nζ

c

ζ + F−1 (u) if Nζ
p > 0 and j ∈ χ̄ζ

X
(3)
j,N

(3)
τ

otherwise

• I(4)
0 =

(
I

(4)
1,0 , . . . , I

(4)
n,0

)
where

I
(4)
j,0 =


0 if 1 ≤ j ≤ Nζ

c

0 if Nζ
p > 0 and j ∈ χ̄ζ

I
(3)
j,N

(3)
τ

otherwise

• S(4)
0 =

(
S

(3)
N

(3)
τ

+K
(1)
ζ−τ

)
1{
−S(3)

N
(3)
τ

≥K(1)
ζ−τ

}: if the

number of unavailable components is upper than
the spare parts arrivals then there are still
unavailable components;

• D(4)
0 =

(
D

(3)
2,N(3)

τ

, . . . , D
(3)
m,N

(3)
τ

)
: D

(3)
1,N(3)

τ

= ζ is
removed;

• L(4)
0 = K

(3)
ζ −Nζ

p × 1{Nζp>0}: the number of
deferred PR is equal to the number of components
awaiting a PR decreased by the number of
remaining spare parts;

• The cost of CR, of PR and of downtime of
components are added to the cumulated cost:

C
(4)
0 = C

(3)
N

(3)
τ

+K
(1)
ζ−τ × c

p
s × e−αζ + Cζuna

+Nζ
c × cc × e−αζ

+Nζ
p × cp × e−αζ × 1{Nζp>0}

where

Cζuna = (Cuna/α)×
Nζc∑
j=1

(
e
−αX(3)

j,N
(3)
τ − e−αζ

)
.

In this case, after the initialization of Markov chain
Z(4), the transitions of Z(4) differ from Z(1) at the
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delivery of a spare part. If there is deferred PR at
the arrival time of a spare part, a PR takes place if
all components are working. Else, the new spare part
supplies the stock. At a failure time, a new spare part
is ordered if the failed component has already been
replaced. The transition function of Z(4) is defined by:

Z
(4)
k+1 = φ4

(
Z

(4)
k , Uk+1

)
=

 φ1

(
Z

(4)
k , Uk+1 (1)

)
if no deferred PR

φ4,1

(
Z

(4)
k , Uk+1

)
otherwise

The transition function of Markov chain Z(4) when
PR are deferred and t ∈ (ζ,H − τ) is now presented.
Under PM strategy, if the postponed PR are pending,
this reflects that the stock is empty. Thus, the transition
function φ4,1 is only presented when the stock is empty
and t ∈ (ζ,H − τ).

Firstly, a failure occurs before a spare part delivery.
If the failed component has already been replaced (CR
or PR), an order is performed. In the opposite case, the
PR of failed component is cancelled and the number of
deferred PR is decreased by 1.

φ4,1 (((x, i) , s, d, c, l, t) , u)

=
((
x̄, ī
)
, s− 1, d, c, l − 1, x1−s

)
1{i1−s=1}

+
(
(x, i) , s− 1, d̄, c+ ccs × e−αx1−s , l, x1−s

)
1{i1−s=0}

where(
x̄, ī
)

= ((x1, i1) , . . . , (x1−s, 0) , . . . , (xn, in)) ,
d̄ = (d, x1−s + τ) .

Secondly, a spare part is delivered before a failure of
component. If the unavailable components are pending
then the oldest unavailable component is repaired, else a
PR can be performed and the component which will be
replaced preventively is randomly chosen with the same
probability among components awaiting a PR.

φ4,1 (((x, i) , s, d, c, l, t) , u)

=
(
G
(
x̂, î
)
, 0, (d2, ..., dm) , c+ cpe

−αd1 , l − 1, d1

)
1{s=0}

+
(
G
(
x̃, ĩ
)
, s+ 1, (d2, ..., dm) , c+ C̄, l, d1

)
1{s<0}

where

C̄ = cc × e−αd1 + (Cuna/α)×
(
e−αx1 − e−αd1

)
,(

x̃, ĩ
)

=
((
d1 + F−1(u1), 0

)
, (x2, i2) , . . . , (xn, in)

)
,

(
x̂, î
)

=
((
x̂1, î1

)
, . . . ,

(
x̂n, în

))
with(

x̂j , îj

)
=
(
xj + F−1(u1)× 1{u2∈Aj}, ij × 1{u2 /∈Aj}

)
for j = {1, . . . , n}

and

Av =
[∑v−1

j=1 ij∑n
j=1 ij

,

∑v
j=1 ij∑n
j=1 ij

)
.

For t ∈ [H − τ,H], no order is performed. Then,
when a component fails and the stock is empty, it is
unavailable up to time H.

As the CM strategy at the operation horizon term H,
the cost of downtime of failed components is added and
the cumulated discounted cost up to H for PM strategy
is:

C
(2)
H = C

(4)
N

(4)
H−ζ

+ CHuna

with

CHuna = Cuna

n∑
j=1

∫ H

X
(4)

j,N
(4)
H−ζ

e−αtdt

1{X(4)

j,N
(4)
H−ζ

≤H}

= Cuna
α

n∑
j=1

(
e
−αX(4)

j,N
(4)
H−ζ − e−αH

)
1{X(4)

j,N
(4)
H−ζ

≤H}

C
(2)
H is the cumulated discounted cost at time H of

the PM strategy and Z
(4)
N

(4)
H−ζ

is the state of the Markov

chain Z(4) just before H.
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